• Fracking 'could cause greater levels of soil pollution'
    Fracking could cause worse soil contamination than previously thought

    Soil remediation

    Fracking 'could cause greater levels of soil pollution'

    Fracking could lead to greater levels of soil contamination, according to a new report. A new study, performed by researchers at Cornell University, US, and published in the journal Environmental Science and Technology, has found that wastewater from hydraulic fracturing could result in a greater level of soil pollution than was previously thought.

    The study found that certain chemicals within wastewater used during the fracking process could trigger the release of certain particles within soil. These particles then bind pollutants to metals, which means that the pollutants could cause more damage to wildlife and human health in the event of a spill.   

    It would seem that wastewater spills when fracking are quite common, with a previous study suggesting that between ten and 40 per cent of the water solution - which is laced with a variety of chemicals - that is injected into rock formations to release shale gas, surges back to the surface. 

    The new study looked at the effects of this "flowback fluid", finding that as the water surges back up to the surface, it releases large amounts of natural gas from the rock. The water also results in soil particles - colloids - being loosened. Pollutants are then able to bind themselves to these colloids, enabling them to leach out and pollute soil and water in the area.

    Colloids are microscopic particles that have an electric charge, which causes them to bind to soil and sand.

    Researchers from Cornell's Soil and Water Group ran tests to see what sort of effect flowback fluid would have on the colloids. They used synthetic colloids and sand to fill glass columns, some of these were then flushed with de-ionised water and others with flowback fluid from the Marcellus Shale.

    It was found that less than five per cent of the colloids were released, whereas the flowback fluid led to between 32 per cent and 36 per cent of the colloids breaking loose. When the flowback fluid was poured in at a faster rate, an extra 36 per cent of colloids were released. 

    The researchers suggested that chemicals within the flowback fluid are able to loosen the bond between the sand and colloids, causing them to repel from the soil particles. More research is to be conducted to see if flowback fluid from other drilling sites creates the same results.


    Events

    Securika

    Apr 15 2025 Moscow, Russia

    IE Expo China 2025

    Apr 21 2025 Shanghai, China

    SETAC Europe

    May 11 2025 Vienna, Austria

    SIEE Pollutec

    May 18 2025 Algiers, Algeria

    23rd International Water Management Exhibition

    May 20 2025 Prague, Czech Republic

    View all events

    Great Job...
    The latest issue will be with you shortly, why not tell your colleagues at your company about us?
    Register for the latest products by eMail
    - Register to the eBulletin, a Monthly email packed with the latest Pollution Solutions products, news and services. Its FREE