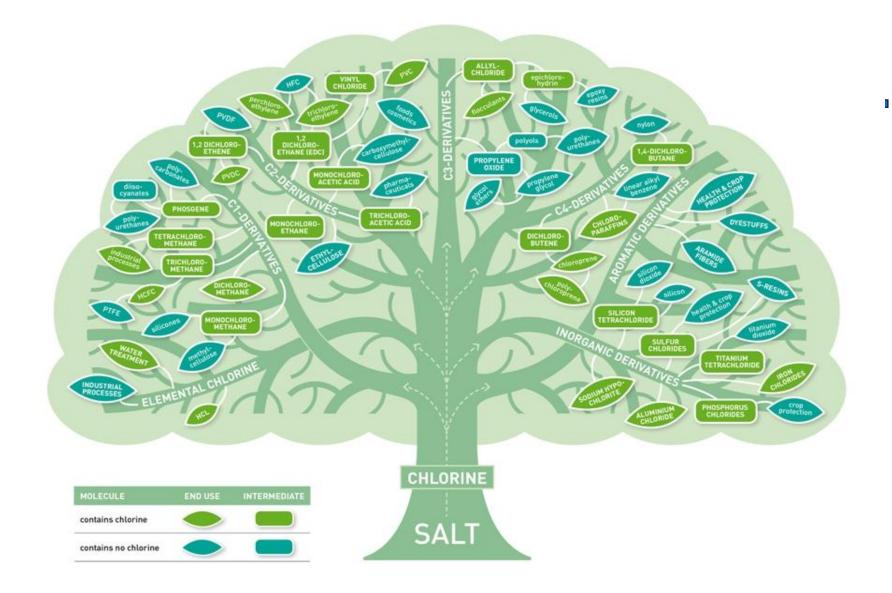


Global chlor-alkali industry: on the move to phase-out mercury cell-technology

ICMGP Edinburgh 29 July 2013

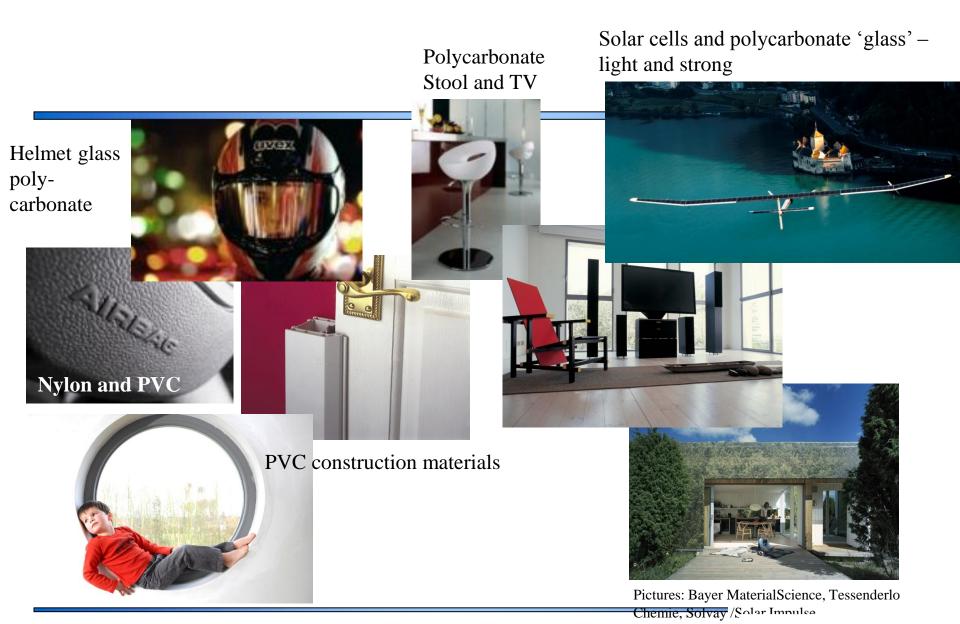
Dolf van Wijk Jean-Pol Debelle, Allan Jones


Content

- Introduction
 - Chlorine and its products
 - Chlorine manufacturing
- Mercury and the chlor-alkali industry
 - Declining use
 - Declining releases
- Mercury phase-out key factors
- Mercury handling and storage

Chlorine – a versatile chemical building block

- Add electrical energy to a brine solution (=electrolysis of NaCl)
- Gives Cl₂ with built-in energy pack (+ H₂ and NaOH)
- Cl₂ reactive versatile building block essential in many modern life materials and products



Chlorine applications

Different routes to manufacture chlorine

• the membrane cell process, nowadays most widely used:

- the mercury cell process, where mercury is used as the cathode
- the diaphragm cell process
- Production capacities: Mercury: 7%; Membrane 77%

Mercury in use in chlor-alkali plants (situation 2012)

Country or region	Hg plants (end 2012)	Capacity kt Cl2/yr	t Hg (**)
Europe	34 (31)	3668	6602
India	3 (1)	98	176
Brazil + Argentina (1) + Uruguay (1)	6	321	578
North America + Mexico	(4)	380	684
Russia	3	414	745
Sub-total WCC	50 (45)	4881	8785
Non WCC members estimate	< 43 (*)	< 1000	< 1900
Grand total	< 93	< 5881	< 10685

(*) but for less than 1 Mt Cl_2 /yr on a total of 5.9 Mt/yr

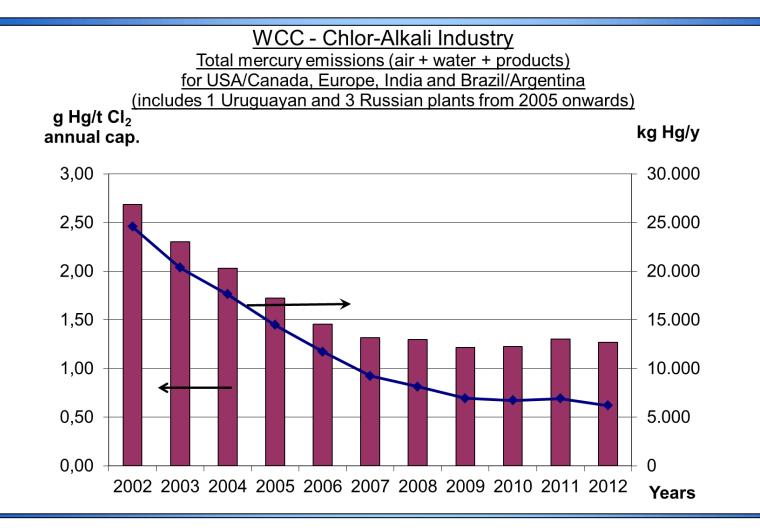
(**) rounded values based on an average of 1.9 t Hg/kt Cl2 capacity

Mercury in use in chlor-alkali plants (situation 2012)

Country or region	Hg plants (end 2012)	Capacity kt Cl2/yr	t Hg (**)
Europe	34 (31)	3668	6602
India	3 (1)	98	176
Brazil + Argentina (1) + Uruguay (1)	6	321	578
North America + Mexico	(4)	380	684
Russia	3	414	745
Sub-total WCC	50 (45)	4881	8785
Non WCC members estimate	< 43 (*)	< 1000	< 1900
Grand total	< 93	< 5881	< 10685

(*) but for less than 1 Mt Cl₂/yr on a total of 5.9 Mt/yr

(**) rounded values based on an average of 1.9 t Hg/kt Cl2 capacity



Mercury process by WCC member companies

Mercury releases WCC member companies

Mercury phase-out – key factor is costs

Membrane advantages versus mercury:

- Lower energy cost: 22-30%
 - But steam needed to concentrate caustic
- Easier operation and maintenance

- Conversion is financial-investment issue
- Long-term investments needed
- In mature markets payback time is over 10 years

Handling and storage of mercury in CA industry

- Safe handling and storage of liquid mercury is longstanding practice
- Good housekeeping; continued training; regular controls are key elements
- WCC guidance documents shared; several topics, e.g. housekeeping, minimisation of emissions, analytical methods, decommissioning, mercury storage ...

http://www.unep.org/hazardoussubstances/Mercury/PrioritiesforAction/ ChloralkaliSector/Reports/tabid/4495/language/en-US/Default.aspx

Safe handling practices during operation

Cell room

Respiratory equipment during cleaning

Safe handling practices during operation

Vapour extraction and active carbon filtration

Confinement with aeration

Safe handling during conversion

Installation of dedicated area to change PPE: Personal protective equipment

Frequent air measurements

Safe handling during conversion

Fluorescent x-ray measurements

Mercury storage

- Storage options under consideration globally:
 - Aboveground belowground (e.g. salt mines)
 - Liquid solid (stabilised)
 - Studies ongoing on feasibility and safety
- Chlor-alkali industry interested in pursuing permanent storage solutions

Mercury sulphide disposal in landfill and salt mines has been applied since many years

- Technical solutions operational in Germany (industrial unit), Spain (lab scale)
- Results show transformation of mercury is complete; no metallic traces detectable in solid
- Germany: industrial installation running successfully since >3 years (>1000 tonnes treated)
- Spanish project for building industrial plant launched summer 2011, including collection and transport; Project on hold due to financial constraints

Stabilisation of mercury (German company)

Brought to full scale, licensed and commercially used

The end product from the stabilisation is the non toxic mercury sulphide, also known as cinnabar.

Thank you for your attention

For further information: Contact Dolf van Wijk - WCC Secretariat <u>dvw@cefic.be</u>

...and:

